Total Synthesis of (\pm)-Cephalosol

Yuanzhen Xie,[†] Ning Wang,[‡] Bin Cheng,[‡] and Hongbin Zhai^{*,†,‡}

Department of Chemistry, University of Science and Technology of China, Hefei 230026, China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China

zhaih@lzu.edu.cn

Received October 29, 2011

A concise and efficient total synthesis of (\pm)-cephalosol has been completed (5 steps from known ester 5, 39% overall yield), featuring a Cu(II)promoted haloisocoumarin formation and sequential Suzuki cross-coupling/intramolecular oxo-Michael addition.

(-)-Cephalosol was isolated as a potent antimicrobial metabolite by Tan and co-workers from Cephalosporium *acremonium* IFB-E007, an endophytic fungal strain.¹ The host plant, Trachelospermun jasminoides (Lindl.) Lem. (Apocynaceae), has long been used in traditional Chinese medicine (TCM) to treat arthritis and other inflammatory diseases.¹ The natural product possesses a novel tricyclic backbone featuring a conjugated unsaturated y-lactone fused to an isocoumarin at C-5a and C-11b. Attached to the sole quaternary center [C-3, of (S) configuration] are methyl and methoxycarbonylmethyl groups. Moreover, this metabolite showed prominent antimicrobial bioactivities as confirmed with human pathogenic microbes including Escherichia coli, Pseudomonas fluorescens, Trichophyton rubrum, and Candida albicans; the MIC values ranged from 1.95 to 7.8 μ g/mL. As a result, this molecule should be a superb target for the synthetic communities. Indeed, the first total synthesis of (\pm) cephalosol (1, Scheme 1) has already been reported by Arlt and Koert.²

Herein, we wish to disclose our studies in developing a new convergent total synthesis. We envisioned that 1 could be constructed from 2 by allylic oxidation followed by a

[†] University of Science and Technology of China.

(1) Zhang, H. W.; Huang, W. Y.; Chen, J. R.; Yan, W. Z.; Xie, D. Q.; Tan, R. X. *Chem.*—*Eur. J.* **2008**, *14*, 10670. Scheme 1. Retrosynthetic Analysis of (\pm) -Cephalosol (1)

selective ether cleavage. Tricycle **2** should be accessible via Suzuki coupling of bromoisocoumarin **3a** with boronate **4** followed by an intramolecular oxo-Michael addition. Bromoisocoumarin **3a** in turn could be generated from the known ester 5^3 by Sonogashira coupling and Cu(II)-promoted haloisocoumarin formation.

[‡]Lanzhou University.

⁽²⁾ Arlt, A.; Koert, U. Synthesis 2010, 917 (requiring 10 steps).

⁽³⁾ Barros, M. T.; Maycock, C. D.; Madureira, M. I.; Ventura, M. R. Chem. Commun. 2001, 37, 1662.

⁽⁴⁾ Takano, S.; Sugihara, T.; Samizu, K.; Akiyama, M.; Ogasawara, K. Chem. Lett. 1989, 10, 1781.

⁽⁵⁾ For representative examples, see: (a) Mehta, S.; Larock, R. C. J. Org. Chem. **2010**, 75, 1652. (b) Roy, S.; Roy, S.; Neuenswander, B.; Hill, D.; Larock, R. C. J. Comb. Chem. **2009**, 11, 1128. (c) Mehta, S.; Waldo, J. P.; Larock, R. C. J. Org. Chem. **2009**, 74, 1141. (d) Chin, L. Y.; Lee, C. Y.; Lo, Y. H.; Wu, M. J. J. Chin. Chem. Soc. **2008**, 55, 643. (e) Liang, Y.; Xie, Y. X.; Li, J. H. Synthesis **2007**, 400. (f) Yao, T.; Larock, R. C. J. Org. Chem. **2002**, 43, 7401. (h) Biagetti, M.; Bellina, F.; Carpita, A.; Stabile, P.; Rossi, R. Tetrahedron **2002**, 58, 5023.

Our synthesis commenced from ester 5^3 (Scheme 2), which was smoothly converted into alkyne 6 by Sonogashira coupling with propargyl alcohol.⁴ The synthesis of 4-haloisocoumarins have been extensively investigated during the past decade.⁵ For instance, Cy₂NH · HX^{5e} could enhance CuCl₂- or CuBr₂-promoted cyclization of *o*-(1-alkynyl)benzoates for the synthesis of 4-haloisocoumarins. However, reaction of 6 by employing this protocol^{5e} led to the formation of **3a** (6-*endo*, 13%) as the minor product compared to **3b** (5-*exo*, 70%, major), as shown in entry 1, Table 1. The cyclization conditions were optimized by scrutinizing the effects of different bases and temperatures (entries 2–6). To our delight, treatment of **6** with CuBr₂ and pyridine in 1,2-dichloroethane at reflux produced **3a** and **3b** in 71% and 13% yields, respectively (entry 5).

Table 1. Optimization of CuBr₂-Promoted Cyclization of 6^a

entry	conditions	yield ^c (3a/3b %)
1	CuBr ₂ , Cy ₂ NH · HBr, 80 °C	$13/70^{b}$
2	$CuBr_2$, reflux	28/38
3	CuBr ₂ , K ₂ CO ₃ , reflux	36/30
4	$CuBr_2$, Cs_2CO_3 , reflux	42/28
5	CuBr ₂ , py, reflux	71/13
6	CuBr ₂ , DBU, reflux	10/6

^{*a*} Reaction conditions: **6** (1.0 equiv), CuBr₂ (2.1 equiv), base (1.5 equiv) in (ClCH₂)₂ for 2 h. ^{*b*} Cy₂NH·HBr (0.1 equiv). ^{*c*} Isolated yield.

Since it was difficult to clearly distinguish the structures of **3a** and **3b** by ¹H and ¹³C NMR analyses only, the presumed **3a** was transformed into the known compound 7⁶ via palladium-catalyzed debromination⁷ with triethylammonium formate (Scheme 3). Unfortunately, our ¹H NMR data failed to match those documented for **7** in the literature.⁶ Nevertheless, the data of the corresponding Scheme 3. Confirmation of the Structure of 3a

benzyl ether 8^8 (obtained by benzylation⁹ of 7 with benzyl 2,2,2-trichloroacetimidate) were identical to those reported, which indicated that the NMR data for 7 in the literature⁶ might not be accurate.

Scheme 4. Completion of the Synthesis of (\pm) -Cephalosol (1)

With **3a** in hand, a four-carbon side chain had to be appended to C-11b¹⁰ of **3a** in order to construct the lactone moiety (C ring) in **1**. Due to its susceptibility to protodeboronation,¹¹ boronate **4** must be generated in situ, for example, from enol triflate 9^{12} by Suzuki coupling with pin₂B₂ (Scheme 4).¹³ Without any purification, the freshly prepared boronate **4** was immediately exposed to **3a** in the presence of 10 mol % of Pd(PPh₃)₄ in dioxane/ H₂O (7:1) at 90 °C for 2 h. The reaction mixture was then directly treated with DBU to trigger the desired intramolecular oxo-Michael addition, and tricycle **2** was thus afforded in 78% yield. Finally, oxidation of **2** with the

⁽⁶⁾ Saeed, A. J. Heterocycl. Chem. 2004, 41, 975.

⁽⁷⁾ Cacchi, S.; Ciattini, P. G.; Morera, E.; Ortar, G. *Tetrahedron Lett.* 1986, 27, 5541.

⁽⁸⁾ Hager, A.; Mazunin, D.; Mayer, P.; Trauner, D. Org. Lett. 2011, 13, 1386.

⁽⁹⁾ Keck, G. E.; Andrus, M. B.; Romer, D. R. J. Org. Chem. 1991, 56, 417.

⁽¹⁰⁾ The numbering code used for cephalosol.

⁽¹¹⁾ Abraham, M. H.; Grellier, P. L. In *The Chemistry of the Metal-Carbon Bond*; Hartley, F. R., Patai, S., Eds.; Wiley: New York, 1985; Vol. 2, p 25.

⁽¹²⁾ For the corresponding ethyl ester of (E)-9, see: Loreto, M. A.; Pompei, F.; Tardella, P. A.; Tofani, D. *Tetrahedron* **1997**, *53*, 15853. Compound (*Z*)-9 is known according to a SciFinder search.

^{(13) (}a) Takagi, J.; Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Am. Chem. Soc. **2002**, 124, 8001. (b) Ishiyama, T.; Takagi, J.; Kamon, A.; Miyaura, N. J. Organomet. Chem. **2003**, 687, 284.

Collins reagent provided **10** (80%), which underwent selective ether cleavage at C-8 to give (\pm) -cephalosol (1) in 93% yield.²

In summary, we have accomplished a five-step total synthesis of (\pm) -cephalosol from ester **5** in 39% overall yield. Cu(II)-promoted haloisocoumarin formation and sequential Suzuki coupling/intramolecular oxo-Michael addition are worth noting for the current strategy.

Acknowledgment. We are grateful for the generous financial support from the National Basic Research Program of China (973 Program: 2010CB833200), NSFC (21172100), and "111" Program of MOE.

Supporting Information Available. Experimental procedures and analytical data of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.